Using qualitative subjective information in the form of "soft" inequalities to solve some ill-posed inverse problems

ZUBYUK Andrey¹ and ASHARIN Vlad²

Lomonosov Moscow State University, Faculty of Physics 119991, Moscow, Leninskie Gory, 1-2 Russia

E-mail: ⁴zubuk@cmpd2.phys.msu.ru, ²asharin.vlad@gmail.com

Let's consider an inverse problem of estimating a latent "signal" $f \in \mathcal{R}_n$ (a vector of *n*dimensional Euclidean space \mathcal{R}_n) from an "observation" $\xi \in \mathcal{R}_m$ (a vector of *m*-dimensional Euclidean space \mathcal{R}_m) that are connected as follows: $\xi = Af + \nu$, where A is a linear operator $\mathcal{R}_n \to \mathcal{R}_m$, and ν is a random noise with values in \mathcal{R}_m . According to the least squares method (LSM), an estimation of the signal f can be found as

$$\arg\min_{a} \|Ag - \xi\|^2 = A^+ \xi, \tag{1}$$

where A^+ is a pseudoinverse of A.

It is known, that (1) is an ill-posed problem — if the operator A has "small" or zero singular values and is known approximately, i. e., an operator $A' \approx A$ is given instead of A, then the estimation $A'^+\xi$ can be very different from $A^+\xi$. In some cases, the difference can be arbitrary large even if A' is very close to A: $||A'^+\xi - A^+\xi|| \xrightarrow[A' \to A]{} \infty$, see [1].

To get over this problem, we suggest to find an estimation \hat{f} in the following form:

$$\hat{f} = \hat{f}^{(1)} + \hat{f}^{(2)}, \quad \hat{f}^{(1)} \in \mathcal{L} \triangleq \mathcal{L}(v_1, \dots, v_k), \quad \hat{f}^{(2)} \in \mathcal{L}^{\perp},$$
(2)

where \mathcal{L} is the linear span of the singular vectors v_1, \ldots, v_k of A' corresponding to its "nonsmall" singular values. $\hat{f}^{(1)}$ is calculated as usual: $\hat{f}^{(1)} = A'^+_{\mathcal{L}} \xi$, where $A'_{\mathcal{L}}$ is the restriction of A' to \mathcal{L} .

To calculate $\hat{f}^{(2)}$, we suggest to use qualitative subjective information about likely monotonicity or constancy of the signal f (and, therefore, the estimation \hat{f}) in the form of "soft" inequalities between some of their coordinates f_i (and \hat{f}_i). For example, likely monotonicity of \hat{f} can be expressed as $\ldots \leq f_{i-1} \leq f_i \leq f_{i+1} \leq \ldots$

A notation " $x \leq y$ " can be read as "most likely $x \leq y$ " and can be modeled as an ill-known subset of $\mathbb{R} \times \mathbb{R}$ in the context of Pyt'ev possibility theory [2, 3]. In the work, the properties of the estimation (2) are studied and discussed.

References

- Tikhonov A. N. Solution of incorrectly formulated problems and the regularization method. Soviet Mathematics Doklady. 4 (4) (1963) 1035–1038.
- [2] Pyt'ev Yu. P. Possibility. Elements of theory and applications. Editorial URSS, Moscow. (2000) — in Russian.
- [3] Zubyuk A. V. A new approach to specificity in possibility theory: Decision-making point of view. Fuzzy Sets and Systems. 364 (2019) 76–95.

Acknowledgement The reported study was funded by RFBR, project number 19-29-09044.